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Surface contact potential patches and Casimir force measurements
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We present calculations of contact potential surface patch effects that simplify previous treatments. It is shown
that, because of the linearity of Laplace’s equation, the presence of patch potentials does not affect an electrostatic
calibration of a two-plate Casimir measurement apparatus. Using models that include long-range variations in
the contact potential across the plate surfaces, a number of experimental observations can be reproduced and
explained. For these models, numerical calculations show that if a voltage is applied between the plates which
minimizes the force, a residual electrostatic force persists, and that the minimizing potential varies with distance.
The residual force can be described by a fit to a simple two-parameter function involving the minimizing potential
and its variation with distance. We show the origin of this residual force by use of a simple parallel capacitor
model. Finally, the implications of a residual force that varies in a manner different from 1/d on the accuracy of
previous Casimir measurements is discussed.
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I. INTRODUCTION

It is often assumed that the surface of a conductor is an
equipotential. While this would be true for a perfectly clean
surface of a homogeneous conductor cut along one of its
crystalline planes, it is not the case for any real surface.
Potential patches can be caused by, for example, oxide films
or some other films adsorbed on the surface (less than a
monolayer is required), strains in the surface, and chemical
impurities within the surface. Such patches effectively create
a surface dipole layer, which alters the potential above the
surface. Various types of monopolar charge disorder could
be also present, significantly altering the properties of a surface
from that of an ideal conductor [1]. Even for chemically
unreactive noble metals, such as gold and copper, carefully
prepared in an ultraclean environment to minimize such
“dirt” films, experiments show that typical surface potential
variations are on the order of at least a few millivolts [2–4].
Similar effects were found in a more recent measurement on
a pair of metallic plates employed in the Laser Interferometer
Gravitational Wave Observatory (LIGO) project [5]. The cause
of surface potential variations is most likely local changes
in surface crystalline structure, giving rise to varying work
functions and hence varying-potential patches. It is well known
that the work function of a metal surface depends on the
crystallographic plane along which it lies; as an example, for
gold the work functions are 5.47 eV, 5.37 eV, and 5.31 eV for
surfaces in the 〈100〉, 〈110〉, and 〈111〉 directions, respectively
[6]. This variation is most likely due to the different effective
electron masses, and the resulting different Fermi energies
along the corresponding directions.

When two conductors of different work functions are
brought into contact, electrons flow until the chemical potential
(i.e., the Fermi energy) in both conductors equalizes. As a
result, there is a net dipole distribution created at the interface,
which gives rise to a “contact” or “Volta” potential established
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between the two conductors, equal to the difference between
their work functions. We therefore expect that the electrostatic
potential along a chemically clean metal surface varies on the
length scale of the typical size of surface crystallites, which
can vary from submicron to millimeter or larger scales.

The generation of an attractive force between conducting
surfaces due to metallic contacts has long been recognized as a
possible systematic limitation to a Casimir force measurement
[7,8]. Recently, Speake and Trenkel [9] have performed a
formal treatment of the effect of random, zero-average, patch
potentials. We reproduce here their result using a slightly
different formalism, and show that the result can be simply
obtained, expressed in terms of the surface potential autocor-
relation function. Furthermore, we provide a simple model that
shows the origin of a distance-dependent minimizing potential,
and that this dependence leads to a residual electrostatic force
that can have a complicated character. The goal of this paper is
not to present a full rigorous mathematical derivation of these
effects, but to illustrate their fundamental nature and motivate
functional forms that have been observed in experiments
in a straightforward manner. More importantly, if the patch
potential is actually measured, it would be possible to perform
an exact numerical calculation of the excess force. Our recent
work [10] indicates variations of contact potentials on the
level of 10 mV, which is a challenging level for Kelvin probe
techniques with the appropriate spatial resolution [11]. Thus,
the full experimental description of these effects remains an
open challenge.

In this paper we define a positive force as an attraction
between the surfaces under consideration. Therefore, attractive
electrostatic and Casimir forces are taken as positive.

II. ATTRACTIVE ELECTROSTATIC FORCE DUE TO
SMALL SURFACE PATCHES

In this section we will consider the effect of random surface
patches on the electrostatic interaction between metallic plates,
for the plane-plane and plane-sphere geometries. We will
assume that the typical patch area is much smaller than the
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effective area of the surface interactions, defined for each of
the geometries below.

A. Parallel planes geometry

Consider two plane parallel metallic surfaces at z = 0 and
z = d. Let the electrostatic potential at z = 0 be V (x, y, z =
0) = Va(x, y) and at z = d be V (x, y, z = d) = Vb(x, y). The
solution of Laplace’s equation in the region 0 < z < d can
be easily found separating variables in cartesian coordinates,
V (x, y, z) = X(x)Y (y)Z(z), where

1

X

d2X

dx2
= −α2,

1

Y

d2Y

dy2
= −β2,

1

Z

d2Z

dz2
= γ 2, (1)

and γ 2 = α2 + β2. The general solution of Laplace’s equation
in this geometry can be written as

V (x, y, z)=
∫ ∞

−∞
dα dβ[cos(αx) + Aα sin(αx)]

× [cos(βy) + Aβ sin(βy)][B+
γ eγ z + B−

γ e−γ z].

(2)

It is convenient to expand the boundary conditions in a cosine
Fourier series:

Va(x, y) =
∫

d2k
(2π )2

Va,k cos(kxx) cos(kyy), (3)

and similarly for Vb(x, y). Imposing the boundary conditions

we get Aα = Aβ = 0, α = kx , β = ky [hence γ =
√

k2
x + k2

y ,

B+
γ = (Vb,γ − Va,γ e−γ d )/2 sinh(γ d), and B−

γ = (Va,γ eγ d −
Vb,γ )/2 sinh(γ d)]. Therefore, the general solution of Laplace’s
equation with the given boundary conditions on each plate is

V (x, y, z) =
∫

d2k
(2π )2

cos(kxx) cos(kyy)

2 sinh(γ d)

× [eγ z(Vb,k−Va,ke
−γ d ) + e−γ z(Va,ke

γd −Vb,k)].

(4)

Now we calculate the electrostatic energy between the
plates. The electrostatic energy density is u = ε0

2 |E|2, so the
total energy Upp per unit area A = LxLy is

Upp = ε0

2

1

A

∫ Lx

0
dx

∫ Ly

0
dy

∫ d

0
dz

×
[(

∂V

∂x

)2

+
(

∂V

∂y

)2

+
(

∂V

∂z

)2
]

. (5)

In order to proceed, we will assume that the electrostatic
patches are stochastic, uncorrelated between the different
plates, and for a given plane the two-point correlation function
is diagonal in the k-basis. That is

〈Va,k〉 = 〈Vb,k〉 = 〈Vb,kVa,k′ 〉 = 0,

〈Va,kVa,k′ 〉 = Ca,k δ2(k − k′), (6)

〈Vb,kVb,k′ 〉 = Cb,k δ2(k − k′),

where 〈. . .〉 means stochastic average. Note that, as in [9], we
assume zero cross correlation between the plates, and that the
correlation function of each plate is independent of the position
of the other plate (i.e., independent of the distance d).

It is then easy to calculate each of the terms in the expression
for Upp:〈(

∂V

∂x

)2
〉

=
∫

d2k
(2π )2

k2
x sin2(kxx) cos2(kyy)

4 sinh2(γ d)

× (2Cb,k[cosh(2γ z) − 1]

+ 2Ca,k{cosh[2γ (z − d)] − 1});〈(
∂V

∂y

)2
〉

=
∫

d2k
(2π )2

k2
y cos2(kxx) sin2(kyy)

4 sinh2(γ d)

× (2Cb,k[cosh(2γ z) − 1]

+ 2Ca,k{cosh[2γ (z − d)] − 1});〈(
∂V

∂z

)2
〉

=
∫

d2k
(2π )2

γ 2 cos2(kxx) cos2(kyy)

4 sinh2(γ d)

× (2Cb,k[cosh(2γ z) + 1]

+ 2Ca,k{cosh[2γ (z − d)] + 1}).
The x and y integrations are trivial, since L−1

x

∫ Lx

0

dx sin2(kxx) = L−1
x

∫ Lx

0 dx cos2(kxx) = 1/2 and the same for

y. For the z integration we use
∫ d

0 dz[cosh(2γ z) ± 1] =
sinh(2γ d)/2γ ± d and

∫ d

0 dz{cosh[2γ (z − d)] ± 1} = sinh
(2γ d)/2γ ± d. Finally the electrostatic parallel-plate energy
is

Upp = ε0

16

∫
d2k

(2π )2

γ sinh(2γ d)

sinh2(γ d)
[Ca,k + Cb,k]. (7)

In the special case of an isotropic patch distribution,
the correlation functions depend only on k = |k|, that is
Ca,k = Ca,k and Cb,k = Cb,k . Then

Upp = ε0

16

1

2π

∫ ∞

0
dk

k2 sinh(2kd)

sinh2(kd)
[Ca,k + Cb,k]. (8)

For the plane-plane geometry, the effective area of interaction
Aeff is the same as the total area of the plate Aeff = A. In this
case, the small surface patch limit corresponds to k2A � 1,
which basically means that we neglect finite-size effects in the
computation of the electrostatic energy.

Let us analyze different limiting cases of Eq. (8). For surface
potential patches small with respect to the effective interaction
area (k2A � 1) but large with respect to the plates separation
(kd � 1 or d � λ, where λ is a characteristic length of a
potential patch) the energy scales as 1/d, which is the same
as in the usual electrostatic case for fixed (nonstochastic)
potential difference. This limit kd → 0 is essentially the
“proximity force approximation” (PFA), to be discussed more
fully in the next section, applied to the electrostatic problem
with in-plane potential variations. In this approximation the
net energy and force is calculated by considering the attraction
between paired infinitesimal surface elements on each plate,
and for large surface patches, the energy is then the additive
sum of the usual 1/d plane-plane energies. Indeed, if we
rewrite Eq. (8) defining the root mean square (rms) potential
fluctuations V 2

rms as

V 2
rms = 1

8π

∫ ∞

0
dk k(Ca,k + Cb,k) ≡

∫ ∞

0
dk kS(k), (9)
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one obtains in the limit kd → 0,

Upp = ε0V
2

rms

2d
. (10)

In the opposite limit (surface potential patches small with
respect to the effective interaction area, k2A � 1, and small
with respect to the plates separation, kd � 1) Eq. (8) has an
asymptotic behavior independent of the distance d. This is
an artifact of the calculational method, that has included the
self-energy of each plate. Following [9], we remove from the
above the potential energy at infinite separation, in order to
have an expression for the interaction energy only. Using that
sinh(2kd) = 2 sinh(kd) cosh(kd), we get

Upp = ε0

4

∫ ∞

0
dk k2

(
2 cosh(kd)

sinh(kd)
− 2

)
S(k)

= ε0

2

∫ ∞

0
dk

k2e−kd

sinh(kd)
S(k). (11)

Therefore, in the limit kd → ∞ the interaction energy van-
ishes exponentially. The reason is that in this case the patches
are so small and change sign so rapidly that there is no net
electric field at a large distance d from a given plate, hence
there is no interaction with the other plate.

Some remarks are in order. First, we have assumed that
the boundary conditions on the two plates had only stochastic
components fluctuating around 0. When there is an external
fixed potential difference V between the two plates, the energy
is the sum of the usual V 2 term plus the patch component
calculated above (basically this is due to the linearity of
Laplace’s equation). The cross terms V V1,k and V V2,k cancel
upon taking stochastic average. Second, when the cross
correlations 〈V1,kV2,k′ 〉 are not zero, there is a possibility that
the interaction energy depends on the relative lateral position
of the two plates, and hence it is possible to have a lateral
force between the plates due to stochastic patches.

B. Sphere-plane geometry

In order to compute the patch effect on the force in the
sphere-plane configuration we make use of the proximity force
approximation. Just as in the case of roughness in Casimir
physics, one must distinguish between two PFAs: one is for
the treatment of the curvature of the sphere (valid when
d � R, where R is the radius of curvature), and the other
one is the PFA applied to the surface patch distribution (valid
when kd � 1). We assume that we are in the conditions for
PFA for the curvature, but we keep kd arbitrary.

For the sphere-plane geometry we define an effective
area of interaction by calculating along the plane surface
the distance r from the point of closest approach (r = 0,
corresponding to the minimal sphere-plane separation d)
where the separation between the surfaces doubles. For a given
r , this latter separation is given by d(r) = d + R(1 − cos θ ),
with sin θ = r/R. In the limit θ � 1 [which corresponds to
R � d(r)] we obtain d(r) = d + r2/2R. The condition for
the surface separation to be double that of the closest-approach
distance is d(reff) = 2d = d + r2

eff/2R, and the effective area
is then

Aeff = πr2
eff = 2πRd. (12)

For a sphere of radius R = 15 cm separated from a plane by
a distance d = 1 µm, the effective distance above defined is
reff = 0.05 cm and the effective area is Aeff = 0.009 cm2. The
small patch limit corresponds to surface patches of area much
smaller than this effective area Aeff , that is k2Aeff � 1.

In the proximity force approximation, the electrostatic force
in the sphere-plane case is Fsp(d) = 2πRUpp(d), namely,

Fsp = πε0R

∫ ∞

0
dk

k2e−kd

sinh(kd)
S(k). (13)

There are a number of models that can be used to describe the
surface fluctuations. The simplest is to say that the potential
autocorrelation function is, for a distance r along a plate
surface,

R(r) = V 2
0 e−r2/λ2

. (14)

Then, by the Wiener-Khinchin theorem, the power spectral
density S(k) can be evaluated as the cosine two-dimensional
Fourier transform of the autocorrelation function, which in our
notation is [12]

S(k) = 2V 2
0

λ2

2
e−πλ2k2

, (15)

where the factor of two reflects the statistically-
independent contributions from the two plate surfaces
(C1,k + C2,k). The plane-sphere force is then given by, using
k = u/λ,

Fsp = 2πε0R
V 2

0

λ

∫ ∞

0
du u2 e−πu2

e2ud/λ − 1
. (16)

The limit of small potential patches kd → 0 (and also small
with respect to the effective area of interaction, k2Aeff � 1),
the force is

Fsp ≈ ε0RV 2
0

d
, (17)

suggesting that V 2
rms = V 2

0 /π . For the large kd limit, the force
becomes exponentially small, just as in the parallel-plates
geometry.

Another possible model for the patch distribution is the
one used in [9]. Assuming that Ca,k = Cb,k = Ṽ 2

0 = const for
kmin < k < kmax and zero otherwise, we get an expression for
V 2

rms (similar to Eq. (12) in [9])

V 2
rms = 1

8π

∫ ∞

0
dkk(Ca,k + Cb,k) = Ṽ 2

0

8π

(
k2

max − k2
min

)
=

∫ ∞

0
dkkS(k). (18)

We then obtain

S(k) = Ṽ 2
0

4π
= 2V 2

rms

k2
max − k2

min

, (19)

for kmin < k < kmax and zero otherwise. The sphere-plane
force from Eq. (13) therefore is

Fsp = 4πε0V
2

rmsR

k2
max − k2

min

∫ kmax

kmin

dk
k2e−kd

sinh(kd)
, (20)

which is the identical (apart from an overall, conventional sign)
to Eq. (14) of [9].
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III. ATTRACTIVE FORCE DUE TO LARGE
SURFACE PATCHES

When the surface patches are larger than the effective area
of interaction Aeff defined in the previous section, the force
between the plane and the sphere due to electrostatic patches
can still be calculated using the method described above, but
the average potential, as inferred by measuring the voltage at
which a minimum in the attractive electrostatic force occurs,
will vary with distance. This can be thought of as a finite-
size effect; if the patch size is roughly the diameter of the
plates, then there can be a nonzero average over the surface.
Alternatively, this problem can be addressed by assuming a
slowly varying average potential across the plate surfaces, as
developed below.

In the PFA, the plate surfaces are divided into differential
areas, and the attractive force, given the potential difference
between the plates and the derivative of the capacitance
between them, is calculated. Specifically, for the sphere-plate
geometry,

F (d) = ε0

2

∫ 2π

0
dϕ

∫ R

0
rdr

V 2(r, ϕ)

(d + r2/2R)2
, (21)

where V (r, ϕ) is the net potential difference between the
surface differentials, located at (r, ϕ) relative to the point of
closest approach (r = 0). Writing V in this form allows the
possibility that there can be a slow (coherent) variation across
the surface, as opposed to, and in addition to, innumerable
small random patches. The PFA works here for two reasons.
One is that the lines of electric force do not cross each other,
the second is that the radius of curvature is large, so the angular
deviations of the field lines are small when the plate diameter D

satisfies D � R. In this limit, the assumption that each surface
differential element interacts only with a single element in the
other plate is a good approximation.

A slow variation in potential across the plate surfaces will
manifest itself as a distance variation in the potential that
minimizes the electrostatic attractive force, i.e., Vm = Vm(d).
Specifically, if we define the force with some externally applied
voltage V0 to be

F (d, V0) = ε0

2

∫ 2π

0
dϕ

∫ R

0
rdr

[V (r, ϕ) + V0]2

(d + r2/2R)2
, (22)

the minimized force at a fixed distance determines the
minimizing potential,

0 = ∂F (d, V0)

∂V0

∣∣∣∣
V0=Vm

= ε0

∫ 2π

0
dϕ

∫ R

0
rdr

V (r, ϕ) + Vm

(d + r2/2R)2
.

This equation implies a minimizing potential dependent on
distance, Vm = Vm(d). Note that, in the idealized case of
an equipotential surface, i.e., V (r, ϕ) = const, Vm would
be independent of d, and the minimized electrostatic force
F (d, V0 = Vm) vanishes. Incidentally, the second derivative
of F (d, V0) with respect to V0 can be used to determine the
distance at which the measurement is being made,

∂2F (d, V0)

∂V 2
0

= 2πε0

∫ R

0
dr

r

(d + r2/2R)2
≈ 2πRε0

d
,

where the finite size effects are neglected (upper limit of the r

integration is set to infinity, which is a very good approximation

when d � R). The important implication is that the patch
potentials do not interfere with the electrostatic calibration,
that is the fundamental basis of our experiment [10], and of all
Casimir force experiments.

It is worth emphasizing a couple of points. First, that the
origin of the distance dependence of the minimizing potential
Vm(d) is an interplay between the curvature of the surfaces and
a variation of the electrostatic potentials Vi (i = a, b) along the
surfaces (possibly due large surface patches). We have shown
above how this effect arises in the context of the sphere-plane
geometry, but of course it can be easily generalized to any
geometry involving nonplanar surfaces. It also follows from
the above that for the parallel plates geometry one should
expect that, even when the surface potentials Vi = Vi(x, y)
vary along the plane surfaces, there should be no interplay with
the (infinite) curvature of the planes, and thus the minimizing
potential Vm should be distance-independent [13]. Second,
distance dependence of the electrical potential minimizing the
force between the plates has been observed in a number of
experiments in the sphere-plane geometry [14–16], as well as
in our own work [10], with further investigations under way.

It has been suggested that the variation of the minimizing
potential with distance can cause an additional electrostatic
force F [d, V0 = Vm(d)], and an estimate was made for the
possible size of the effect [17], where the varying contact
potential is considered in a system of plates connected in series.
The analysis presented in [17] does not reproduce the effects
seen in our experimental work, and we were unable to develop
a fundamental theory of a plate-plate interaction that could
cause a varying contact potential. Nonetheless, we have seen
above that within the PFA a coherent variation of the surface
potential along the non-planar surface does imply a distance-
dependent minimizing potential. Now we present a simple
model that produces not only varying contact potentials, but
also the corresponding residual electrostatic force, consistent
with our observations in [10]. The model is depicted in Fig. 1.
In this figure, the two capacitors [short distance, Ca(d), long
distance, Cb(d + �)] create a net force on the lower continuous
plate (setting V1 = 0 initially),

F (d, V0) = − 1
2C ′

aV
2

0 − 1
2C ′

b(V0 + Vc)2, (23)

where

C ′
a = ∂Ca(d)

∂d
; C ′

b = ∂Cb(d + �)

∂d
, (24)

Cb

Vc

d
d+∆ V

0

Ca V1

FIG. 1. A toy model illustrating the mechanism for the generation
of a distance-dependent minimizing electrostatic potential Vm(d) and
electrostatic residual force F el

res(d).
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and V0 can be varied, with Vc a fixed property of the plates.
The force is minimized when

∂F (d, V0)

∂V0

∣∣∣∣
V0=Vm

= 0 ⇒ Vm(d) = − C ′
bVc

C ′
a + C ′

b

, (25)

implying a residual electrostatic force

F el
res(d) = F [d, V0 = Vm(d)]

= −
[
C ′

a + C ′2
a

C ′
b

]
V 2

m(d)

2

= −
[

C ′
aC

′
b

C ′
a + C ′

b

]
V 2

c

2
. (26)

It is easy to take a case of parallel plate capacitors
(C ′

a = −ε0A/d2 and C ′
b = −ε0A/(d + �)2, where A is the

area of each of the upper plates in Fig. 1, assumed to be equal;
hence, the lower continuous plate has area 2A) and to show
that there is a residual electrostatic force at the minimizing
potential. Indeed, in such case,

Vm(d) = −Vc

d2

d2 + (d + �)2
, (27)

F el
res(d) = ε0A

2

V 2
c

d2 + (d + �)2
. (28)

Alternatively, in terms of Vm(d) (up to V1, see below), the force
is

F el
res(d) = ε0A

2

V 2
m(d)[d2 + (d + �)2]

d4
. (29)

Experimentally, Vm(d) must include a distance-independent
offset V1 which arbitrarily depends on the sum of con-
tact potentials in the complete circuit between the plates.
Therefore, the force due to large patches considered in this
section should be written as proportional to [Vm(d) + V1]2,
instead of simply V 2

m(d), where V1 is determined by a fit to
experimental data. Note that when the two upper capacitor
plates are at the same distance from the lower capacitor plate,
i.e., when � = 0, Eq. (27) predicts a Vm independent of
distance, and Eq. (29) predicts a residual electrostatic force
F el

res(d) ∝ (Vm + V1)2/d2. Since no residual force is expected
in this case, the minimizing potential must be Vm = −V1.

In order to analyze the sphere-plane geometry, one can
divide the sphere into infinitesimal planar areas (as done in the
proximity force approximation), each with a random potential.
In this picture, one can think of the two upper capacitor plates
in Fig. 1 as one of those infinitesimal parts of the whole
spherical surface, and the distance � being a local distance
�(r) = d + R(1 − cos θ ) reflecting the effect of the curvature
of the spherical surface. In this case, C ′

a(d) = −2πε0R/d, and
the denominator of Eq. (29) becomes d2. Integrating the force
on the lower planar plate over the whole spherical surface to get
the net force leads to a further reduction of the power of d in the
denominator, leaving the sphere-plane residual electrostatic
force proportional to [Vm(d) + V1]2/d. Again, V1 is a fit pa-
rameter that represents a sort of surface average potential, plus
circuit offsets.

IV. TOTAL ELECTROSTATIC FORCE RESIDUALS

We are now in a position to compute the total electrostatic
residual force at the minimizing potential. On the one hand,
the presence of surface patches small with respect to the
effective area of interaction in the sphere-plane geometry
leads to an attractive electrostatic force given by Eq. (13),
which was derived using the proximity force approximation
(d � R) to treat the curvature of the spherical plate. This
component of the force due to stochastic potential patches
is clearly independent of the applied voltage V0 between the
plates, and therefore will be present even when the applied
voltage is set at the minimizing potential, V0 = Vm(d). As
we have seen in Sec. II, the exact dependence of this force
on distance varies for different models for the statistical
properties of the two-point correlation functions of the surface
potentials. However, in the limit of patches much smaller
that the sphere-plane separation (kd � 1), all models predict
a dependency of the form V 2

rms/d, where Vrms denotes the
rms voltage fluctuations.

On the other hand, the presence of surface patches large
with respect to the effective area of interaction, corresponding
to a coherent variation of the potential along the spher-
ical surface V (r, ϕ), leads both to a distance-dependent
minimizing potential Vm(d) and to a residual component
of the electrostatic force F el

res(d) = F [d, V0 = Vm(d)], even
when the external potential V0 is set at the minimizing
potential. As seen in Sec. III, this force is due to the
interplay between surface patches and the curvature of the
nonplanar surface, has the form [Vm(d) + V1]2/d, and is in
addition to the V0-independent force due to small potential
patches.

By adding the two contributions of small and large
surface patches (Secs. II and III, respectively), we can
determine the form of the residual electrostatic force at the
minimizing potential. By numerical modeling of different
patch sizes and distributions using Eq. (22), we found that
the experimental observations should be described by a
relationship of the form

F el
res(d) = πRε0

[
(Vm(d) + V1)2 + V 2

rms

d

]
, (30)

where we have specifically assumed the small kd limit for
the small patches. Both V1 and Vrms are constants determined
by fitting to the observed force at large plate separations,
where the Casimir force is relatively small. In [10] we
have measured the dependency of the minimizing potential
with distance, and we have applied Eq. (30) to fit the
observed residual electrostatic force in a Ge sphere-plane
Casimir experiment for distances large enough (d > 5µm)
to neglect possible contributions due to Casimir forces. With
only two adjustable parameters V1 and Vrms, very good
fit (χ2 of order unity) between the experimental data and
Eq. (30) was possible. We emphasize that Eq. (30) was
obtained in a heuristic way by numerically analyzing the
distance-dependent force and variation in minimizing potential
due to random surface potential distributions by use of
Eq. (22). The physical basis of Eq. (30) is nonetheless quite
sound.
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V. DISTANCE CORRECTION DUE TO RESIDUAL FORCES
AND ITS IMPLICATION ON THE INTERPRETATION

OF PREVIOUS DATA

In previous work [8], the minimizing potential was assumed
to be independent of distance and the absolute separation
between the sphere-plane plates in a Casimir experiment
was determined by fitting a background electrostatic force
(at distances where the Casimir force is relatively small and
negligible) to a function

F el
res,fit(d) = Bf

d + d0f

, (31)

where Bf and d0f are fitting constants. Unfortunately, in [8], a
possible distance variation of the minimizing potential was
not measured. However, a relatively large fixed potential
was constantly applied to give a 1/d force in the data, and
this was used to determine the absolute separation.

One can estimate a systematic error for [8] (and possibly for
other experiments where Vm was assumed to be constant) by
considering a possible distance-dependence of the minimizing
potential, and taking our Ge measurement results [10] as
“typical.” In the previous section we noted that the residual
long range force in the Ge experiment is well described by
Eq. (30) in terms of the measured distance-dependent contact
potential Vm(d). If, instead, we had mistakenly assumed
Vm to be independent of distance and neglected any Vrms

contribution, the same experimental data for the residual long
range force in [10] is also well described by a power-law fit of
the form 1/de, with exponent e = 0.72 ± 0.2 (as mentioned
in footnote [24] in [10]). Note that this is the residual force
at the minimizing potential, so if the applied voltage is not
set precisely to Vm(d), there can be an additional force, but
we neglect that here. In the following we will assume that a
power-law form for the long-range residual force also applies
to the Au experiment [8], and we will take a nominal value
of 0.8 for the exponent to assess the possible systematic
error introduced in [8]. This estimate is entirely heuristic, and
given that the minimizing potential was not measured as a
function of distance in [8], it is the best that can be done in a
post-analysis and represents a reasonable range.

An error in the distance determination is introduced if an
improper function 1/d is used instead of the “true” function,
which we take to be 1/d0.8. Generally, we might expect
contributions from both, as

F el
res,true(d) = B1

d + d0
+ B2

(d + d0)0.8
, (32)

where the first term represents a patch potential force and an
inexact cancellation of the average contact potential (V1), and
the second term represents the force due to the variation in
Vm(d). We assume that d0 is fixed and known; our goal is to
determine the distance error in determining d0 by fitting to a
function of the wrong form. We can define an effective χ2 and
minimize its value to find the offset due to the possibility that
the wrong fitting function, 1/(d + d0) alone, was used in [8].
A form that allows simple numerical calculation is as follows,
substituting x = d/d0:

χ2=
∫ xmax

0
dx

[
Bf

x + (1 + ε)
− α

(x + 1)0.8
− (1 − α)

x + 1

]2

, (33)

where d0f = d0 + εd0, α parametrizes the relative amounts, at
d = 0 (or x = 0) of the 1/d and 1/d0.8 forces in the “true” (and
assumed known) function, and xmax = dmax/d0 is the largest
(dimensionless) separation to which measurements are taken.
When α = 0 the “wrong” fitting function is equal to the “true”
function, and ε = 0. For simplicity, we choose to define α as
the relative contribution of the two forces at d0 because their
relative size is distance dependent.

In [8] the relative contributions from an applied fixed
voltage 1/d force, and the possible residual unaccounted
1/d0.8 force implied by our recent results [10], are in the ratio
approximately 10/1, so α ≈ 0.1, at distances of order 1 µm.
The parameters Bf and ε are then determined by minimizing
χ2. Although the integral in Eq. (33) appears as elementary,
its evaluation is quite cumbersome. Results of numerically
minimizing χ2 as a function of α and Bf , with xmax = 10,
show that

ε = 0.65α. (34)

Therefore, for α = 0.1 we obtain ε = 0.065. Applying this
result to Fig. 4 in [8] shows that the x axis needs to be
shifted to the left (toward the origin) by 0.065 µm. That is, the
distance scale is offset by 0.065 µm. With this displacement,
the Casimir force Fc at the true location is better described
by the theoretical result due to Böstrom and Sernelius [18],
which can be seen from the fractional change in force,
δFc/Fc = −3δd/d, which gives a 20% effect and brings the
measured Casimir force into agreement with the predicted
result in [18] for distances around 1 µm; however, this result
should be considered as preliminary and as a rough estimate
of the correction magnitude that is possible. Because patch
potential effects are sample dependent, it is not possible to say
conclusively that the effects described here contributed to the
result, although, not having tested for such possible effects,
an additional systematic error could be ascribed to the result
in [8].

Other possible background forces that deviate from a 1/d

character will lead to corrections to the true distance when a fit
to 1/(d − d0) is performed. For the discussion here, we chose
a form that is motivated by our experimental results, and by a
theoretical analysis [9]. Alternatively, if a residual force that
appears to have a 1/d character is removed from Casimir data,
a possible background force as considered here will persist as
a direct systematic.

VI. CONCLUSIONS

We have derived in a straightforward and heuristic manner
several important results pertaining to the excess electric
force between plates that results from random surface patch
potentials. These results have been cast in terms of the surface
autocorrelation function, or alternatively the two dimensional
spatial Fourier power spectrum. Our recent measurement [10]
of short-range forces with Ge plates in the sphere-plane
configuration has shown the importance of assessing surface
patch potentials when measuring Casimir force residuals. A
recent Casimir experiment in the plane-plane configuration
[13] has also found a large residual (non-Casimir) force that is
also probably related to electrostatic patch residual forces.
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Furthermore, we have shown that long-range surface
correlations in the sphere-plane geometry can lead to a distance
dependence of the electrostatic force minimizing potential.
This effect is due to the dependence of the net surface
averaging area on the separation between the plates and has
been described by use of a simple capacitor model. The
model clearly reproduces the general effects, provides an
explanation of the origin of the varying minimizing potential,
and demonstrates that even when the force is minimized, a
residual electrostatic force remains. The results here should
be compared to earlier work [17] where it was assumed
that the variation in minimizing potential was due to a
voltage in series with the plates, with that voltage varying
with distance by some unknown mechanism; this analysis
could not describe the observed (non-Casimir) force in the
germanium measurements described in [10]. We note that the
effect is expected to exist whenever there are surface potential
patches and non-perfectly-parallel surfaces; the model shown
in Fig. 1 requires only the existence of patches with differ-
ent absolute distances between the surfaces. Such distance
differentials can be created by surface roughness and/or
lack of parallelism.

Finally, we have shown that determining the distance
between a sphere and a plane in a Casimir force experiment
can be subject to systematic effects arising from residual
electrostatic forces. The magnitude of the error in the distance
determination is large enough to bring the results presented in
[8] into agreement with the calculation that takes into account
properly the low frequency permittivity of metals [18]. The
relevance of the analysis presented in this paper to precision
Casimir force measurements and their possible systematic
contamination should not go unnoticed. We are currently
performing new measurements using Au coated plates in the
apparatus used for Ge measurements, and will revisit these
systematic effects.
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